
LECTURE TWO: Channel Coding and Error Control: 
Forward Error Control; Error Detection Methods; Parity Checking; Linear 

Block Codes, Cyclic Redundancy Checking; Feedback Error Control.  

INTRODUCTION 

The main aim of any communication schemes is to provide error-free data transmission. In a 

communication system, information can be transmitted by analog or digital signals. For 

analog means, the amplitude of the signal reflects the information of the source, whereas for 

digital case, the information will first be translated into a stream of „0‟ and „1‟. Then two 

different signals will be used to represent „0‟ and „1‟ respectively. The main advantage of 

using digital signal communication is that errors introduced by noise during the transmission 

can be detected and possibly corrected. For communication using cables, the random motion 

of charges in conducting (e.g. resistors), known as thermal noise, is the major source of noise. 

For wireless communication channels, noise can be introduced in various ways. In the case of 

mobile phones, noise also includes the signals sent by other mobile phone users in the 

system. Figure 1and Figure 2 show the flow of a simple digital communication system.   

 
Fig 1: The flow diagram of a simple digital communication system. 

 

 
Fig 2: The flow diagram of a simple digital communication system showing noise addition. 

 

Table 1 shows the difference between signal detection for analogue and digital systems. From 

the Table, it can be seen that error detection and correction as well as better accuracy of 



transmitted information are possible for digital communication due to encoding and 

decoding.  

 

Table 1: Difference between signal detection for analogue and digital systems. 

 
 

The fundamental resources at the disposal of a communications engineer are signal power, 

time and bandwidth. For a given communications environment, these three resources can be 

traded against each other. A general objective, however, is often to achieve maximum data 

transfer, in a minimum bandwidth while maintaining an acceptable quality of transmission. 

The quality of transmission, in the context of digital communications, is essentially 

concerned with the probability of bit error, Pe, at the receiver.  

The Shannon-Hartley law shown in equation 1 for the capacity of a communications channel 

demonstrates two things. 

(i) Firstly it shows (quantitatively) how bandwidth (B) and signal power (S/N) may 

be traded in an ideal system, 

(ii) Secondly it gives a theoretical limit for the transmission rate of (reliable, i.e. error 

free) data (R) from a transmitter of given power, over a channel with a given 

bandwidth, operating in a given noise environment.  
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In order to realize this theoretical limit, however, an appropriate coding scheme (which the 

Shannon-Hartley law assures us exists) must be found.  



Coding in Engineering 
There are basically two types of coding used in Engineering: (i) Source Coding and Channel 

coding. Irrespective of the type of coding used, it is generally aimed at achieving the 

following:  

(i) To encrypt information for security purposes (Encryption) 

(ii) To reduce space for the data stream (Data Compression) 

(iii) To change the form of representation of the information so that it can be 

transmitted over a communication channel. 

(iv) To encode a signal so that any error that occurs during transmission can be 

detected and possibly corrected. 

 

In practice, the objective of the design engineer is to realize the required data rate (often 

determined by the service being provided) within the bandwidth constraint of the available 

channel and the power constraint of the particular application. For a fixed S/N, the only 

practical option available for changing data quality from problematic to acceptable is to use 

error-control coding. Another practical motivation for the use of coding is to reduce the 

required S/N for a fixed bit error rate. This reduction in S/N may, in turn, be exploited to 

reduce the required transmitted power or reduce the hardware costs by requiring a smaller 

antenna size in the case of radio communications.  

Moreover, the use of error-control coding adds complexity to the system, especially for the 

implementation of decoding operations in the receiver. Thus, the design trade-offs in the use 

of error-control coding to achieve acceptable error performance include considerations of 

bandwidth and system complexity.  

Bit Error rates (BER) can be made smaller by the following methods: 

1. By increasing transmitter power but this may not always be desirable, for example in 

man-portable systems where the required extra battery weight may be unacceptable. 

2. Use of diversity which is effective against burst errors caused by signal fading. There 

are three main types of diversity: space diversity, frequency diversity, and time 

diversity. All these schemes incorporate redundancy in that data is, effectively, 

transmitted twice: i.e. via two paths, at two frequencies, or at two different times. In 

space diversity two or more antennas are used which are sited sufficiently far apart for 

fading at their outputs to be de-correlated. Frequency diversity employs two different 

frequencies to transmit the same information. (Frequency diversity can be in-band or 

out-band depending upon the frequency spacing between the carriers.) In time 

diversity systems, the same message is transmitted more than once at different times.  

3. By introducing full deplex transmission, implying simultaneous 2-way transmission. 

Here when a transmitter sends information to a receiver, the information is 'echoed' 

back to the transmitter on a separate feedback channel. Information echoed back 

which contains errors can then be retransmitted. This technique requires twice the 

bandwidth of single direction (simplex) transmission, which may be unacceptable in 

terms of spectrum utilization. 

4. A fourth method for coping with poor BER is automatic repeat request (ARQ). Here a 

simple error detecting code is used and, if an error is detected in a given data block, 

and then a request is sent via a feedback channel to retransmit that block. ARQ is very 

effective, for example in facsimile transmission. On long links with fast transmission 

rates, however, such as is typical in satellite communications, ARQ can be very 

difficult to implement.  

5. The fifth technique for coping with high BER is to employ forward error correction 

coding (FECC). In common with three of the other four techniques FECC introduces 

redundancy, this time with data check bits interleaved with the information traffic 



bits. It relies on the number of errors in a long block of data being close to the 

statistical average and, being a forward technique, requires no return channel. The 

widespread adoption of FECC was delayed, historically, because of its complexity 

and high cost of implementation relative to the other possible solutions. Complexity is 

now less of a problem following the proliferation of VLSI custom coder/decoder 

chips. 

Source Coding 
Suppose a word „Zebra‟ is going to be sent out. Before this information can be transmitted to 

the channel, it is first translated into a stream of bits („0‟ and „1‟). The process is called 

source coding. There are many commonly used ways to translate that. For example, if ASCII 

code is used, each alphabet will be represented by 7-bit so called the code word. The 

alphabets „Z‟, „e‟, „b‟, „r‟, „a‟, will be encoded as: 

„1010101‟, „0110110‟, „0010110‟, „0010111‟, „0001110‟ 

The ASCII code is an example of fixed-length code, because each of the code word is of the 

same length (7 bits). However, in the view of efficient communication, the occurrence of „Z‟ 

is not as often as that of „e‟ and „a‟. If there is a way of encoding information such that the 

alphabets with higher probability of occurrence are assigned with shorter code words, and 

longer for the other letters which seldom come out, then on the whole it may be able to 

conserve the number of bits to be sent to the channel while sending the same information. 

This is what the variable length code can do. Example of this type os codes is the Huffman 

Codes. 

Channel Coding  
As already mentioned, error control coding is a method to detect and possibly correct errors 

by introducing redundancy to the stream of bits to be sent to the channel. The design goal of 

channel coding (also referred as Error Control Coding) is basically to increase the resistance 

of a digital communication system to a channel noise. Error control coding is used to detect 

and often correct symbols which are received in error. The two main methods of error control 

are: Automatic repeat request and Forward error control techniques. 

Figure 3 shows different types of error control codes (or channel coding methods). 



 
 

Figure 3: Different types of error control codes (or channel coding methods). 

Automatic Repeat Request (ARQ).  
In this method when a receiver circuit detects errors in a block of data, it request that the data 

is retransmitted. 

 



 

 



 

CASE 1: Normal Operation In a normal transmission, the sender sends frame 0 

and waits to receive ACK 1. When ACK 1 is received, it sends frame 1 and then waits to 

receive ACK 0, and so on. The ACK must be received before the timer set for each frame 

expires. Figure 4 shows successful frame transmissions.   

 
Fig 4 

CASE 2: Lost or Damaged Frame A lost or damaged frame is handled in 

the same way by the receiver; when the receiver receives a damaged frame, it discards it, 

which essentially means the frame is lost. The receiver remains silent about a lost frame and 

keeps its value of R. For example, in Fig 5, the sender transmits frame 1, but it is lost. The 

receiver does nothing, retaining the value of R (1) (. After the timer at the sender site expires, 

another copy of frame 1 is sent. 



 
Figure 5 

CASE 3 : Lost Acknowledgment A lost or damaged acknowledgment is 

handled in the same way by the sender; if the sender receives a damaged acknowledgment, it 

discards it Figure 6 shows a lost ACK 0. The waiting sender does not know if frame 1 has 

been received. When the timer for frame 1 expires the sender retransmits frame 1. Note that 

the receiver has already received frame 1 and it was expecting to receive frame 0 (R= 0). 

Therefore, it silently discards the second copy of frame 1.  

 
Figure 6 

CASE 4: Delayed Acknowledgment Another problem that may occur is 

delayed acknowledgment. An acknowledgment can be delayed at the receiver or by some 



problem with the link. Figure 7 shows the delay of ACK 1; it is received after the timer for 

frame 0 has already expired. The sender has already retransmitted a copy of frame 0. 

However, the value of R at the receiver site is still 1, which means that the receiver expects to 

see frame 1, the receiver, therefore, discards the duplicate frame 0.  The sender has now 

received two ACKs, one that was delayed and one that was sent after the duplicate frame 0 

arrived. The second ACK 1 is discarded.  

 
Figure: 7 
 
2. Go-Back-N ARQ (Sliding Window)  
CASE 1:  Normal Operation Figure 8 shows a normal operation of this 

mechanism. The sender keeps track of the outstanding frames and updates the variables and 

windows as the acknowledgments arrive  



  
Figure 8 
CASE 2: Damaged or Lost Frame Now let us see what happens if a frame 

is lost. Figure 9 shows that frame 2 is lost. Note that when the receiver receives frame 3 it is 

discarded because the receiver is expecting frame 2 not frame 3 (according to its window). 

After the timer for frame 2 expires at the sender site, the sender sends frames 2 and 3 (it goes 

back to 2). 

 
Figure 9 
 



CASE 3: Damaged or Lost Acknowledgment  
If an acknowledgment is damaged or lost, we can have two situations. If the next 

acknowledgment arrives before the expiration of any timer, there is no need for 

retransmission of frames because acknowledgments are cumulative in this protocol. ACK 4 

means ACK 1 to ACK 4. So if ACK 1, ACK 2, and ACK 3 are lost. ACK 4 covers them. 

However, if the next ACK arrives after the time-out, the frame and all the frames after that 

are resent. Note that the receiver never resends an ACK. The figure and details are left out as 

an exercise.   

3. SELECTIVE REPEAT ARQ  
Go-Back-N ARQ simplifies the process at the receiver site. The receiver keeps track of only 

one variable, and there is no need to buffer out-of-order frames; they are simply discarded. 

However, this protocol is very inefficient for a noisy link. In a noisy link a frame has a higher 

probability of damage, which means the resending of multiple frames. This resending uses up 

the bandwidth and slows down the transmission. For noisy links, there is another mechanism 

that does not resend N frames when just one frame is damaged: only the damaged frame is 

resent. This mechanism is called Selective Repeat ARQ. It is more efficient for noisy links, 

but the processing at the receiver is more complex. Let us show the operation of the 

mechanism with an example of a lost frame, as shown in Figure 10. Frames 0 and 1 are 

accepted and received because they are in the range specified by the receiver window. When 

frame 3 is received, it is also accepted for the same reason. However, the receiver sends a 

NAK 2 to show that frame 2 has not been received. When the sender receives the NAK 2, it 

resends only frame 2, which is then accepted because it is in the range of the window.   

 
Figure 10 

Forward Error Correction (FEC)  
In this method, the transmitted data is encoded so that the data can correct as well as detect 

errors caused by channel noise. The choice of ARQ or FEC depends on the particular 

application. ARQ is often used when there is a full duplex (2-way) channel because it is 

relatively inexpensive to implement. FEC is used when the channel is not full duplex or 

where ARQ is not desirable because real time is required. 



When we talk about digital systems, be it a digital computer or a digital communication set-

up, the issue of error detection and correction is of great practical significance. Errors creep 

into the bit stream owing to noise or other impairments during the course of its transmission 

from the transmitter to the receiver. Any such error, if not detected and subsequently 

corrected, can be disastrous, as digital systems are sensitive to errors and tend to malfunction 

if the bit error rate is more than a certain threshold level. Error detection and correction, 

involves the addition of extra bits, called check bits, to the information-carrying bit stream to 

give the resulting bit sequence a unique characteristic that helps in detection and localization 

of errors. These additional bits are also called redundant bits as they do not carry any 

information. While the addition of redundant bits helps in achieving the goal of making 

transmission of information from one place to another error free or reliable, it also makes it 

inefficient. The Channel Encoder will add bits to the message bits to be transmitted 

systematically. After passing through the channel, the Channel decoder will detect and 

correct the errors. A simple example is to send „000‟ („111‟ correspondingly) instead of 

sending only one „0‟ („1‟ correspondingly) to the channel. Due to noise in the channel, the 

received bits may become „001‟. But since either „000‟ or „111‟ could have been sent. By 

majority logic decoding scheme, it will be decoded as „000‟ and therefore the message has 

been a „0‟.  In general the channel encoder will divide the input message bits into blocks of k 

messages bits and replaces each k message bits block with a n-bit code word by introducing 

(n-k) check bits to each message block. In this section, we will examine some common error 

detection and correction codes. 

PARITY CODE 
A parity bit is an extra bit added to a string of data bits in order to detect any error that might 

have crept into it while it was being stored or processed and moved from one place to another 

in a digital system. We have an even parity, where the added bit is such that the total number 

of “l”s in the data bit string becomes even, and an odd parity, where the added bit makes the 

total number of “l”s in the data bit string odd. This added bit could be a „0‟ or a „1‟. As an 

example, if we have to add an even parity bit to 01000001 (the eight-bit ASCII code for „A‟), 

it will be a „0‟ and the number will become 001000001. If we have to add an odd parity bit to 

the same number, it will be a „l‟ and the number will become 101000001. The odd parity bit 

is a complement of the even parity bit. The most common convention is to use even parity, 

that is, the total number of 1s in the bit stream, including the parity bit, is even. 

The parity check can be made at different points to look for any possible single-bit error, as it 

would disturb the parity. This simple parity code suffers from two limitations. Firstly, it 

cannot detect the error if the number of bits having undergone a change is even. Although the 

number of bits in error being equal to or greater than 4 is a very rare occurrence, the addition 

of a single parity cannot be used to detect two-bit errors, which is a distinct possibility in data 

storage media such as magnetic tapes. Secondly, the single-bit parity code cannot be used to 

localize or identify the error bit even if one bit is in error. There are several codes that 

provide self-single-bit error detection and correction mechanisms. 

REPETITION CODE 
The repetition code makes use of repetitive transmission of each data bit in the bit stream. In 

the case of threefold repetition, „1‟ and „0‟ would be transmitted as „111‟ and „000‟ 

respectively. If, in the received data bit stream, bits are examined in groups of three bits, the 

occurrence of an error can be detected. In the case of single-bit errors, „1‟ would be received 

as 011 or 101 or 110 instead of 111, and a „0‟ would be received as 100 or 010 or 001 instead 

of 000. In both cases, the code becomes self-correcting if the bit in the majority is taken as 

the correct bit. There are various forms in which the data are sent using the repetition code. 

Usually, the data bit stream is broken into blocks of bits, and then each block of data is sent 



some predetermined number of times. For example, if we want to send eight-bit data given by 

11011001, it may be broken into two blocks of four bits each. In the case of threefold 

repetition, the transmitted data bit stream would be 110111011101100110011001. However, 

such a repetition code where the bit or block of bits is repeated 3 times is not capable of 

correcting two-bit errors, although it can detect the occurrence of error. For this, we have to 

increase the number of times each bit in the bit stream needs to be repeated. For example, by 

repeating each data bit 5 times, we can detect and correct all two-bit errors. The repetition 

code is highly inefficient and the information throughput drops rapidly as we increase the 

number of times each data bit needs to be repeated to build error detection and correction 

capability. 

Cyclic Redundancy Code 

Cyclic redundancy check (CRC) codes provide a reasonably high level of protection at low 

redundancy level. The cycle code for a given data word is generated as follows. The data 

word is first appended by a number of 0s equal to the number of check bits to be added. This 

new data bit sequence is then divided by a special binary word whose length equals n+1, n 

being the number of check bits to be added. The remainder obtained as a result of modulo-2 

division is then added to the dividend bit sequence to get the cyclic code. The code word so 

generated is completely divisible by the divisor used in the generation of the code. Thus, 

when the received code word is again divided by the same divisor, an error-free reception 

should lead to an all „0‟ remainder. A nonzero remainder is indicative of the presence of 

errors. 

The probability of error detection depends upon the number of check bits, n, used to construct 

the cyclic code. It is 100 % for single-bit and two-bit errors. It is also 100 % when an odd 

number of bits are in error and the error bursts have a length less than n+1. The probability of 

detection reduces to 1 – (1/2)
n-1 

for an error burst length equal to n+1, and to 1 – (1/2)
n 

for an 

error burst length greater than n+1. 
 

 



 

 
 
 

Hamming Code 

We have seen, in the case of the error detection and correction codes described above, how an 

increase in the number of redundant bits added to message bits can enhance the capability of 

the code to detect and correct errors. If we have a sufficient number of redundant bits, and if 

these bits can be arranged such that different error bits produce different error results, then it 

should be possible not only to detect the error bit but also to identify its location. In fact, the 

addition of redundant bits alters the „distance‟ code parameter, which has come to be known 

as the Hamming distance. The Hamming distance is nothing but the number of bit 

disagreements between two code words. For example, the addition of single-bit parity results 

in a code with a Hamming distance of at least 2. The smallest Hamming distance in the case 

of a threefold repetition code would be 3. Hamming noticed that an increase in distance 

enhanced the code‟s ability to detect and correct errors. Hamming‟s code was therefore an 

attempt at increasing the Hamming distance and at the same time having as high an 

information throughput rate as possible. 

The algorithm for writing the generalized Hamming code is as follows: 
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We get the collection of code words in the Table below 

Table: Collection of Code words 
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